SiegelR.L.MillerK.D.WagleN.S.JemalA.Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.21763 36633525
[Google Scholar]Gurib-FakimA.Medicinal plants: Traditions of yesterday and drugs of tomorrow.Mol. Aspects Med.200627119310.1016/j.mam.2005.07.008 16105678
[Google Scholar]HalliwellB.Dietary polyphenols: Good, bad, or indifferent for your health?Cardiovasc. Res.200773234134710.1016/j.cardiores.2006.10.004 17141749
[Google Scholar]RiosA.O.AntunesL.M.G.BianchiM.L.P.Bixin and lycopene modulation of free radical generation induced by cisplatin–DNA interaction.Food Chem.200911341113111810.1016/j.foodchem.2008.08.084
[Google Scholar]KikuzakiH.UsuguchiJ.NakataniN.Constituents of Zingiberaceae. I. Diarylheptanoids from the rhizomes of ginger (Zingiber officinale Roscoe).Chem. Pharm. Bull.199139112012210.1248/cpb.39.120
[Google Scholar]JitoeA.MasudaT.TengahI.G.P.SupraptaD.N.GaraI.W.NakataniN.Antioxidant activity of tropical ginger extracts and analysis of the contained curcuminoids.J. Agric. Food Chem.19924081337134010.1021/jf00020a008
[Google Scholar]KikuzakiH.NakataniN.Antioxidant effects of some ginger constituents.J. Food Sci.19935861407141010.1111/j.1365‑2621.1993.tb06194.x
PriorR.L.Fruits and vegetables in the prevention of cellular oxidative damage.Am. J. Clin. Nutr.2003783Suppl.570S578S10.1093/ajcn/78.3.570S 12936951
[Google Scholar]CaiY.LuoQ.SunM.CorkeH.Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer.Life Sci.200474172157218410.1016/j.lfs.2003.09.047 14969719
[Google Scholar]KaurC.KapoorH.C.Anti‐oxidant activity and total phenolic content of some Asian vegetables.Int. J. Food Sci. Technol.200237215316110.1046/j.1365‑2621.2002.00552.x
[Google Scholar]NamikiM.Antioxidants/antimutagens in food.Crit. Rev. Food Sci. Nutr.199029427330010.1080/10408399009527528 2257080
[Google Scholar]KumariS.GoyalA.Sönmez GürerE.Algın YaparE.GargM.SoodM.SindhuR.K.Bioactive loaded novel nano-formulations for targeted drug delivery and their therapeutic potential.Pharmaceutics2022145109110.3390/pharmaceutics14051091 35631677
[Google Scholar]OberliesN.H.KrollD.J.Camptothecin and taxol: Historic achievements in natural products research.J. Nat. Prod.200467212913510.1021/np030498t 14987046
[Google Scholar]Sithranga BoopathyN.KathiresanK.J.Anticancer drugs from marine flora: An overview.J. Oncol.20102010214186
[Google Scholar]DyshlovoyS.A.FedorovS.N.ShubinaL.K.KuzmichA.S.BokemeyerC.Keller-von AmsbergG.HoneckerF.Aaptamines from the marine sponge Aaptos sp. display anticancer activities in human cancer cell lines and modulate AP-1-, NF-κB-, and p53-dependent transcriptional activity in mouse JB6 Cl41 cells.BioMed Res. Int.201420141710.1155/2014/469309 25215281
[Google Scholar]McClaryB.ZinshteynB.MeyerM.JouanneauM.PellegrinoS.YusupovaG.SchullerA.ReyesJ.C.P.LuJ.GuoZ.AyindeS.LuoC.DangY.RomoD.YusupovM.GreenR.LiuJ.O.Inhibition of eukaryotic translation by the antitumor natural product agelastatin A.Cell Chem. Biol.2017245605613.e510.1016/j.chembiol.2017.04.006 28457705
[Google Scholar]JouanneauM.McClaryB.ReyesJ.C.P.ChenR.ChenY.PlunkettW.ChengX.MilinichikA.Z.AlboneE.F.LiuJ.O.RomoD.Derivatization of agelastatin A leading to bioactive analogs and a trifunctional probe.Bioorg. Med. Chem. Lett.20162682092209710.1016/j.bmcl.2016.02.051 26951751
[Google Scholar]StoutE.P.ChoiM.Y.CastroJ.E.MolinskiT.F.Potent fluorinated agelastatin analogues for chronic lymphocytic leukemia: design, synthesis, and pharmacokinetic studies.J. Med. Chem.201457125085509310.1021/jm4016922 24673739
[Google Scholar]AklM.AyoubN.EbrahimH.MohyeldinM.OrabiK.FoudahA.SayedK.Araguspongine C induces autophagic death in breast cancer cells through suppression of c-Met and HER2 receptor tyrosine kinase signaling.Mar. Drugs201513128831110.3390/md13010288 25580621
[Google Scholar]PalkarM.RaneR.ThapliyalN.ShaikhM.AlwanW.An insight into purine, tyrosine and tryptophan derived marine antineoplastic alkaloids. Anti-Canc.Agen. Med. Chem.2015158947954
[Google Scholar]MathieuV.WauthozN.LefrancF.NiemannH.AmighiK.KissR.ProkschP.Cyclic versus hemi-bastadins. pleiotropic anti-cancer effects: from apoptosis to anti-angiogenic and anti-migratory effects.Molecules20131833543356110.3390/molecules18033543 23519198
[Google Scholar]El-DemerdashA.MoriouC.MartinM.T.Rodrigues-StienA.S.PetekS.Demoy-SchneiderM.HallK.HooperJ.N.A.DebitusC.Al-MourabitA.Cytotoxic guanidine alkaloids from a French Polynesian Monanchora n. sp. sponge.J. Nat. Prod.20167981929193710.1021/acs.jnatprod.6b00168 27419263
[Google Scholar]RaneR.A.SahuN.U.GutteS.D.MahajanA.A.ShahC.P.BangaloreP.Synthesis and evaluation of novel marine bromopyrrole alkaloid-based hybrids as anticancer agents.Eur. J. Med. Chem.20136379379910.1016/j.ejmech.2013.03.029 23584542
[Google Scholar]XuS.NijampatnamB.DuttaS.VeluS.Cyanobacterial metabolite calothrixins: Recent advances in synthesis and biological evaluation.Mar. Drugs20161411710.3390/md14010017 26771620
[Google Scholar]YingyuadP.SinthuvanichC.LeepasertT.ThongyooP.BoonrungsimanS.Preparation, characterization and in vitro evaluation of calothrixin B liposomes.J. Drug Deliv. Sci. Technol.20184449149710.1016/j.jddst.2018.02.010
[Google Scholar]Iglesias-ArteagaM.A.MorzyckiJ.W.Cephalostatins and Ritterazines.Alkaloids Chem. Biol.20137215327910.1016/B978‑0‑12‑407774‑4.00002‑9 24712099
[Google Scholar]KotokuN.Creation of readily accessible analogue of cortistatin A as an antitumor drug lead.Yakugaku Zasshi2013133886787210.1248/yakushi.13‑00159 23903226
[Google Scholar]NitulescuI.I.MeyerS.C.WenQ.J.CrispinoJ.D.LemieuxM.E.LevineR.L.PelishH.E.ShairM.D.Mediator kinase phosphorylation of STAT1 S727 promotes growth of neoplasms with JAK-STAT activation.EBioMedicine20172611212510.1016/j.ebiom.2017.11.013 29239838
[Google Scholar]PossZ.C.EbmeierC.C.OdellA.T.TangpeerachaikulA.LeeT.PelishH.E.ShairM.D.DowellR.D.OldW.M.TaatjesD.J.Identification of mediator kinase substrates in human cells using cortistatin A and quantitative phosphoproteomics.Cell Rep.201615243645010.1016/j.celrep.2016.03.030 27050516
[Google Scholar]RoelM.RubioloJ.A.Guerra-VarelaJ.SilvaS.B.L.ThomasO.P.Cabezas-SainzP.SánchezL.LópezR.BotanaL.M.Marine guanidine alkaloids crambescidins inhibit tumor growth and activate intrinsic apoptotic signaling inducing tumor regression in a colorectal carcinoma zebrafish xenograft model.Oncotarget2016750830718308710.18632/oncotarget.13068 27825113
[Google Scholar]BharateS.B.YadavR.R.BattulaS.VishwakarmaR.A.Meridianins: Marine-derived potent kinase inhibitors.Mini Rev. Med. Chem.201212761863110.2174/138955712800626728 22512550
[Google Scholar]ZhidkovM.E.SmirnovaP.A.TryapkinO.A.KantemirovA.V.KhudyakovaY.V.MalyarenkoO.S.ErmakovaS.P.GrigorchukV.P.KauneM.AmsbergG.V.DyshlovoyS.A.Total syntheses and preliminary biological evaluation of brominated fascaplysin and reticulatine alkaloids and their analogues.Mar. Drugs201917949610.3390/md17090496 31450717
[Google Scholar]EgorovM.DelpechB.AubertG.CresteilT.Garcia-AlvarezM.C.CollinP.MarazanoC.A concise formation of N-substituted 3,4-diarylpyrroles synthesis and cytotoxic activity.Org. Biomol. Chem.20141291518152410.1039/C3OB42309C 24448828
[Google Scholar]IbrahimS.R.M.MohamedG.A.Ingenine E, a new cytotoxic β-carboline alkaloid from the Indonesian sponge Acanthostrongylophora ingens.J. Asian Nat. Prod. Res.201719550450910.1080/10286020.2016.1213723 27588456
[Google Scholar]SirimangkalakittiN.ChamniS.CharupantK.ChanvorachoteP.MoriN.SaitoN.SuwanboriruxK.Chemistry of renieramycins. 15. Synthesis of 22-O-ester derivatives of jorunnamycin A and their cytotoxicity against non-small-cell lung cancer cells.J. Nat. Prod.20167982089209310.1021/acs.jnatprod.6b00433 27487087
[Google Scholar]BallotC.MartoriatiA.JendoubiM.BucheS.FormstecherP.MortierL.KluzaJ.MarchettiP.Another facet to the anticancer response to lamellarin D: induction of cellular senescence through inhibition of topoisomerase I and intracellular Ros production.Mar. Drugs201412277979810.3390/md12020779 24473175
[Google Scholar]ZhangN.WangD.ZhuY.WangJ.LinH.Inhibition effects of lamellarin D on human leukemia K562 cell proliferation and underlying mechanisms.Asian Pac. J. Cancer Prev.201415229915991910.7314/APJCP.2014.15.22.9915 25520128
[Google Scholar]WangA.ZhaoZ.ZhengX.CaoH.Recent research progress in anticancer alkaloid lamellarin N and lamellarin L.Youji Huaxue201333348310.6023/cjoc201209034
[Google Scholar]TheppawongA.PloypradithP.ChuawongP.RuchirawatS.ChittchangM.Facile and divergent synthesis of lamellarins and lactam‐containing derivatives with improved drug likeness and biological activities.Chem. Asian J.201510122631265010.1002/asia.201500611 26183429
[Google Scholar]WangW.NijampatnamB.VeluS.E.ZhangR.Discovery and development of synthetic tricyclic pyrroloquinone (TPQ) alkaloid analogs for human cancer therapy.Front. Chem. Sci. Eng.201610111510.1007/s11705‑016‑1562‑6
[Google Scholar]ZhangX.XuH.ZhangX.VorugantiS.MurugesanS.NadkarniD.H.VeluS.E.WangM.H.WangW.ZhangR.Preclinical evaluation of anticancer efficacy and pharmacological properties of FBA-TPQ, a novel synthetic makaluvamine analog.Mar. Drugs201210121138115510.3390/md10051138 22822362
[Google Scholar]DyshlovoyS.A.VenzS.HauschildJ.TabakmakherK.M.OtteK.MadanchiR.WaltherR.GuziiA.G.MakarievaT.N.ShubinaL.K.FedorovS.N.StonikV.A.BokemeyerC.BalabanovS.HoneckerF.V. AmsbergG.Anti-migratory activity of marine alkaloid monanchocidin A proteomics-based discovery and confirmation.Proteomics201616101590160310.1002/pmic.201500334 27001414
[Google Scholar]DyshlovoyS.TabakmakherK.HauschildJ.ShchekalevaR.OtteK.GuziiA.MakarievaT.KudryashovaE.FedorovS.ShubinaL.BokemeyerC.HoneckerF.StonikV.von AmsbergG.Guanidine alkaloids from the marine sponge Monanchora pulchra show cytotoxic properties and prevent EGF-induced neoplastic transformation in vitro.Mar. Drugs201614713310.3390/md14070133 27428983
[Google Scholar]LiL.AbrahamA.ZhouQ.AliH.O’BrienJ.HamillB.ArcaroliJ.MessersmithW.LaBarberaD.An improved high yield total synthesis and cytotoxicity study of the marine alkaloid neoamphimedine: an ATP-competitive inhibitor of topoisomerase IIα and potent anticancer agent.Mar. Drugs20141294833485010.3390/md12094833 25244109
[Google Scholar]LacerdaR.B.Bromopyrrole marine alkaloids.Revista Virtual de Química.201572713729
[Google Scholar]DysonL.WrightA.D.YoungK.A.SakoffJ.A.McCluskeyA.Synthesis and anticancer activity of focused compound libraries from the natural product lead, oroidin.Bioorg. Med. Chem.20142251690169910.1016/j.bmc.2014.01.021 24508308
[Google Scholar]LiuQ.Y.ZhouT.ZhaoY.Y.ChenL.GongM.W.XiaQ.W.YingM.G.ZhengQ.H.ZhangQ.Q.Antitumor effects and related mechanisms of penicitrinine A, a novel alkaloid with a unique spiro skeleton from the marine fungus Penicillium citrinum.Mar. Drugs20151384733475310.3390/md13084733 26264002
[Google Scholar]VitaleR.M.GattiM.CarboneM.BarbieriF.FelicitàV.GavagninM.FlorioT.AmodeoP.Minimalist hybrid ligand/receptor-based pharmacophore model for CXCR4 applied to a small-library of marine natural products led to the identification of phidianidine a as a new CXCR4 ligand exhibiting antagonist activity.ACS Chem. Biol.20138122762277010.1021/cb400521b 24102412
[Google Scholar]BuchananJ.C.PetersenB.P.ChamberlandS.Concise total synthesis of phidianidine A and B.Tetrahedron Lett.201354456002600410.1016/j.tetlet.2013.08.063
[Google Scholar]SunasseeS.N.RansomT.HenrichC.J.BeutlerJ.A.CovellD.G.McMahonJ.B.GustafsonK.R.Steroidal alkaloids from the marine sponge Corticium niger that inhibit growth of human colon carcinoma cells.J. Nat. Prod.201477112475248010.1021/np500556t 25338277
[Google Scholar]MartínM.J.CoelloL.FernándezR.ReyesF.RodríguezA.MurciaC.GarranzoM.MateoC.Sánchez-SanchoF.BuenoS.de EguiliorC.FranceschA.MuntS.CuevasC.Isolation and first total synthesis of PM050489 and PM060184, two new marine anticancer compounds.J. Am. Chem. Soc.201313527101641017110.1021/ja404578u 23750450
[Google Scholar]PereiraR.B.EvdokimovN.M.LefrancF.ValentãoP.KornienkoA.PereiraD.M.AndradeP.B.GomesN.G.M.Marine-derived anticancer agents: Clinical benefits, innovative mechanisms, and new targets.Mar. Drugs201917632910.3390/md17060329 31159480
[Google Scholar]LeeY.J.HanS.LeeH.S.KangJ.S.YunJ.SimC.J.ShinH.J.LeeJ.S.Cytotoxic psammaplysin analogues from a Suberea sp. marine sponge and the role of the spirooxepinisoxazoline in their activity.J. Nat. Prod.20137691731173610.1021/np400448y 23964644
[Google Scholar]SongY.HuL.ChenR.ChenX.Research progress in synthesis of renieramycin-type alkaloids.Youji Huaxue20153581627164010.6023/cjoc201504003
[Google Scholar]SiengalewiczP.RinnerU.MulzerJ.Recent progress in the total synthesis of naphthyridinomycin and lemonomycin tetrahydroisoquinoline antitumor antibiotics (TAAs).Chem. Soc. Rev.200837122676269010.1039/b804167a 19020681
[Google Scholar]Cheun-AromT.ChanvorachoteP.SirimangkalakittiN.ChuanasaT.SaitoN.AbeI.SuwanboriruxK.Replacement of a quinone by a 5-O-acetylhydroquinone abolishes the accidental necrosis inducing effect while preserving the apoptosis-inducing effect of renieramycin M on lung cancer cells.J. Nat. Prod.20137681468147410.1021/np400277m 23876104
[Google Scholar]ScottR.KarkiM.ReisenauerM.R.RodriguesR.DasariR.SmithW.R.PellyS.C.van OtterloW.A.L.ShusterC.B.RogeljS.MagedovI.V.FrolovaL.V.KornienkoA.Synthetic and biological studies of tubulin targeting c2-substituted 7-deazahypoxanthines derived from marine alkaloid rigidins.ChemMedChem2014971428143510.1002/cmdc.201300532 24644272
[Google Scholar]FongH.CoppB.Synthesis, DNA binding and antitumor evaluation of styelsamine and cystodytin analogues.Mar. Drugs2013111227429910.3390/md11020274 23358307
[Google Scholar]MonkB.J.DaltonH.BenjaminI.TanovićA.Trabectedin as a new chemotherapy option in the treatment of relapsed platinum sensitive ovarian cancer.Curr. Pharm. Des.201218253754376910.2174/138161212802002814 22591421
[Google Scholar]RomanoM.FrapolliR.ZangariniM.BelloE.PorcuL.GalmariniC.M.García-FernándezL.F.CuevasC.AllavenaP.ErbaE.D’IncalciM.Comparison of in vitro and in vivo biological effects of trabectedin, lurbinectedin (PM01183) and Zalypsis® (PM00104).Int. J. Cancer201313392024203310.1002/ijc.28213 23588839
[Google Scholar]NairVSchuhmannIAnkeHKelterGFiebigHHHelmkeELaatsch, H Marine bacteria, XLVII–Psychrotolerant bacteria from extreme antarctic habitats as producers of rare bis-and trisindole alkaloids.Planta Medica.20168209/10910918
[Google Scholar]CanalsA.Arribas-BosacomaR.AlbericioF.ÁlvarezM.AymamíJ.CollM.Intercalative DNA binding of the marine anticancer drug variolin B.Sci. Rep.2017713968010.1038/srep39680 28051169
[Google Scholar]NijampatnamB.DuttaS.VeluS.E.Recent advances in isolation, synthesis, and evaluation of bioactivities of bispyrroloquinone alkaloids of marine origin.Chin. J. Nat. Med.201513856157710.1016/S1875‑5364(15)30052‑2 26253489
[Google Scholar]MondalA.BoseS.BanerjeeS.PatraJ.K.MalikJ.MandalS.K.KilpatrickK.L.DasG.KerryR.G.FimognariC.BishayeeA.Marine cyanobacteria and microalgae metabolites—A rich source of potential anticancer drugs.Mar. Drugs202018947610.3390/md18090476 32961827
[Google Scholar]MatuljaD.WittineK.MalatestiN.LaclefS.TurksM.MarkovicM.K.AmbrožićG.MarkovićD.Marine natural products with high anticancer activities.Curr. Med. Chem.20202781243130710.2174/0929867327666200113154115 31931690
[Google Scholar]HanL.HuangK.ChenC.ZhuW.MaY.HaoX.HeH.ZhangY.Taberdines L and M, two new alkaloids from Tabernaemontana divaricata.Nat. Prod. Res.202236215470547510.1080/14786419.2021.2015596 34933610
[Google Scholar]HeoC.S.KangJ.S.KwonJ.H.AnhC.V.ShinH.J.Pyrrole-containing alkaloids from a marine-derived actinobacterium Streptomyces zhaozhouensis and their antimicrobial and cytotoxic activities.Mar. Drugs202321316710.3390/md21030167 36976216
[Google Scholar]LeeH.MoonS.J.YooY.D.JeongE.J.RhoJ.R.Voratins A–C: Pyridinium alkaloids from the marine dinoflagellate Effrenium voratum with inhibitory effects on biomarkers for benign prostatic hyperplasia.J. Nat. Prod.20228561495150210.1021/acs.jnatprod.1c01190 35671052
[Google Scholar]TangW.Z.YuH.B.LuJ.R.LinH.W.SunF.WangS.P.YangF.Aaptolines A and B, two new quinoline alkaloids from the marine sponge Aaptos aaptos.Chem. Biodivers.2020174e200007410.1002/cbdv.202000074 32110847
[Google Scholar]HitoraY.MaedaR.HondaK.SadahiroY.IseY.AngkouwE.D.E.P.MangindaanR.; Tsukamoto, S. Neopetrosidines A-D, pyridine alkaloids isolated from the marine sponge Neopetrosia chaliniformis and their cell cycle elongation activity.Bioorg. Med. Chem.20215011646110.1016/j.bmc.2021.116461 34649068
[Google Scholar]XiangY.ZengQ.MaiZ.M.ChenY.C.ShiX.F.ChenX.Y.ZhongW.M.WeiX.Y.ZhangW.M.ZhangS.WangF.Z.Asperorydines N-P, three new cyclopiazonic acid alkaloids from the marine-derived fungus Aspergillus flavus SCSIO F025.Fitoterapia202115010483910.1016/j.fitote.2021.104839 33513431
[Google Scholar]JiangJ.JiangH.ShenD.ChenY.ShiH.HeF.Citrinadin C, a new cytotoxic pentacyclic alkaloid from marine-derived fungus Penicillium citrinum.J. Antibiot.202275530130310.1038/s41429‑022‑00516‑8 35288677
[Google Scholar]LongS.ResendeD.KijjoaA.SilvaA.FernandesR.XavierC.VasconcelosM.SousaE.PintoM.Synthesis of new proteomimetic quinazolinone alkaloids and evaluation of their neuroprotective and antitumor effects.Molecules201924353410.3390/molecules24030534 30717179
[Google Scholar]ChengX.W.LiJ.Q.JiangY.J.LiuH.Z.HuoC.A new indolizinium alkaloid from marine-derived Streptomyces sp. HNA39.J. Asian Nat. Prod. Res.202123991391810.1080/10286020.2020.1799987 32819162
[Google Scholar]Abdul-HameedZ.H.BawakidN.O.AlorfiH.S.SobahiT.R.AlburaeN.A.Abdel-LateffA.ElbehairiS.E.I.AlfaifiM.Y.AlhakamyN.A.AlarifW.M.Monoterpene indole alkaloids from the aerial parts of Rhazya stricta induce cytotoxicity and apoptosis in human adenocarcinoma cells.Molecules2022274142210.3390/molecules27041422 35209210
[Google Scholar]SunC.GeX.MudassirS.ZhouL.YuG.CheQ.ZhangG.PengJ.GuQ.ZhuT.LiD.New glutamine-containing azaphilone alkaloids from deep-sea-derived fungus Chaetomium globosum HDN151398.Mar. Drugs201917525310.3390/md17050253 31035362
[Google Scholar]WeiX.FengC.WangS.Y.ZhangD.M.LiX.H.ZhangC.X.New indole diketopiperazine alkaloids from soft coral-associated epiphytic fungus Aspergillus sp. EGF 15-0-3.Chem. Biodivers.2020175e200010610.1002/cbdv.202000106 32212241
[Google Scholar]ChenS.C.LiuZ.M.TanH.B.ChenY.C.LiS.N.LiH.H.GuoH.ZhuS.LiuH.X.ZhangW.M.Tersone AG, new pyridone alkaloids from the deep-sea fungus Phomopsis tersa.Mar. Drugs201917739410.3390/md17070394 31277263
[Google Scholar]El-KashefD.H.DaletosG.PlenkerM.HartmannR.MándiA.KurtánT.WeberH.LinW.AncheevaE.ProkschP.Polyketides and a dihydroquinolone alkaloid from a marine-derived strain of the fungus Metarhizium marquandii.J. Nat. Prod.20198292460246910.1021/acs.jnatprod.9b00125 31432669
[Google Scholar]ShubinaL.K.MakarievaT.N.von AmsbergG.DenisenkoV.A.PopovR.S.DyshlovoyS.A.Monanchoxymycalin C with anticancer properties, new analogue of crambescidin 800 from the marine sponge Monanchora pulchra.Nat. Prod. Res.201933101415142210.1080/14786419.2017.1419231 29272957
[Google Scholar]XieY.GuoL.HuangJ.HuangX.CongZ.LiuQ.WangQ.PangX.XiangS.ZhouX.LiuY.WangJ.WangJ.Cyclopentenone-containing tetrahydroquinoline and geldanamycin alkaloids from streptomyces malaysiensis as potential anti-androgens against prostate cancer cells.J. Nat. Prod.20218472004201110.1021/acs.jnatprod.1c00297 34225450
[Google Scholar]DyshlovoyS.A.KauneM.KriegsM.HauschildJ.BusenbenderT.ShubinaL.K.MakarievaT.N.HofferK.BokemeyerC.GraefenM.StonikV.A.von AmsbergG.Marine alkaloid monanchoxymycalin C: A new specific activator of JNK1/2 kinase with anticancer properties.Sci. Rep.20201011317810.1038/s41598‑020‑69751‑z 32764580
[Google Scholar]DiX.HardardottirI.FreysdottirJ.WangD.GustafsonK.R.OmarsdottirS.MolinskiT.F.Geobarrettin D, a rare herbipoline-containing 6-bromoindole alkaloid from Geodia barretti.Molecules2023287293710.3390/molecules28072937 37049700
[Google Scholar]ChenY.LiuZ.HuangY.LiuL.HeJ.WangL.YuanJ.SheZ.Ascomylactams A–C, cytotoxic 12-or 13-membered-ring macrocyclic alkaloids isolated from the mangrove endophytic fungus Didymella sp. CYSK-4, and structure revisions of phomapyrrolidones A and C.J. Nat. Prod.20198271752175810.1021/acs.jnatprod.8b00918 31251621
[Google Scholar]NiuS.ChenZ.PeiS.ShaoZ.ZhangG.HongB.Acremolin D, a new acremolin alkaloid from the deep-sea sediment derived Aspergillus sydowii fungus.Nat. Prod. Res.202236194936494210.1080/14786419.2021.1913587 33977846
[Google Scholar]CarboneD.GalloC.NuzzoG.BarraG.Dell’IsolaM.AffusoM.FolleroO.AlbianiF.SansoneC.ManzoE.d’IppolitoG.FontanaA.Marine natural product lepadin A as a novel inducer of immunogenic cell death via CD91-dependent pathway.Nat. Prod. Bioprospect.20231313410.1007/s13659‑023‑00401‑3 37779162
[Google Scholar]DyshlovoyS.A.KudryashovaE.K.KauneM.MakarievaT.N.ShubinaL.K.BusenbenderT.DenisenkoV.A.PopovR.S.HauschildJ.FedorovS.N.BokemeyerC.GraefenM.StonikV.A.von AmsbergG.UrupocidinC.A new marine guanidine alkaloid which selectively kills prostate cancer cells via mitochondria targeting.Sci. Rep.2020101976410.1038/s41598‑020‑66428‑5 32555282
[Google Scholar]BiliaARPiazziniVAspreaMRisalitiLVantiGBergonziMCPlants extracts loaded in nanocarriers: An emergent formulating approach.Nat. prod. commun.20181391934578X1801300914
[Google Scholar]BaldassariS.BalboniA.DravaG.DonghiaD.CanepaP.AilunoG.CaviglioliG.Phytochemicals and cancer treatment: Cell-derived and biomimetic vesicles as promising carriers.Pharmaceutics2023155144510.3390/pharmaceutics15051445 37242687
[Google Scholar]